Solve algebraically the simultaneous equations, x^2 + y^2 = 25 and y – 3x = 13

First you need to pick a variable to solve for( irrelevant which one is picked) so I will choose to solve y first as in this question it is easier (as y has no coefficient). So make y the subject of the simpler equation(without the power) to get y = 13 + 3x, then sub this into the first equation to eliminate the y variable to get x^2 + (13 + 3x)^2 = 25. Then simplify and group terms (also putting all terms on the same side) to get quadratic in x: 10x^2 + 78x + 144 = 0. Then can simplify by factoring out 2 to get 5x^2 + 39x + 72 = 0. Then use quadratic formula or factorising into (5x + 2)(x + 3) get solutions for x being -3 and -24/5. Then can sub these into the original equation to find solutions for y being 4 and -7/5 respectively. So solutions are x = -3, y = 4 and x = -24/5 and y is -7/5.

BU
Answered by Benjamin U. Maths tutor

2736 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Probability: These 6 coins are in a box - 10p, 10p, 10p, 20p, 20p, 50p. Someone takes 2 coins at random. What is the probability that the total value of the two coins is at least 40p?


How to complete the square to find the value of x?


A scalene triangle has side lengths a=xcm, b=10cm and c=15cm. The angle A=105 degrees is opposite side a. Using the cosine rule, find the value of x to 3 s.f.


The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2,6). The line l crosses the x-axis at the point P. Work out the area of the triangle OAP.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences