Solve algebraically the simultaneous equations, x^2 + y^2 = 25 and y – 3x = 13

First you need to pick a variable to solve for( irrelevant which one is picked) so I will choose to solve y first as in this question it is easier (as y has no coefficient). So make y the subject of the simpler equation(without the power) to get y = 13 + 3x, then sub this into the first equation to eliminate the y variable to get x^2 + (13 + 3x)^2 = 25. Then simplify and group terms (also putting all terms on the same side) to get quadratic in x: 10x^2 + 78x + 144 = 0. Then can simplify by factoring out 2 to get 5x^2 + 39x + 72 = 0. Then use quadratic formula or factorising into (5x + 2)(x + 3) get solutions for x being -3 and -24/5. Then can sub these into the original equation to find solutions for y being 4 and -7/5 respectively. So solutions are x = -3, y = 4 and x = -24/5 and y is -7/5.

BU
Answered by Benjamin U. Maths tutor

2964 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Raya buys a van for £8500 plus VAT at 20%.Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio (in simplest form) of the deposit Raya pays to the total of the 12 equal payments.


A bag with 750 balls is comprised of 300 red, 200 blue and 250 green. What is the probability of three green balls being in succession, providing the ball is put back between each turn.


In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


How to solve how many sweets Hanna had?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning