Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Answered by Maths tutor

3036 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use simultaneous equations to find the points where the following lines cross: 3x - y = 4 and x^2 + 7y = 5


Integrate exp(2x)cos(8x) by parts


What is a derivative and how are they used?


The probability function of a discrete random variable X is given by p(x)=x^2 x =1,2,3. Find E(X)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences