Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Answered by Maths tutor

3391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 3x + 5y = 7. What is the gradient of AB?


Find the binomial expansion of (-8+4x)^(2/3) up to and including the term in x^2.


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning