Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Answered by Maths tutor

3395 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


Given that x = 4sin(2y + 6), Find dy/dx in terms of x


solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


Find the derivative of x^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning