Differentate sin(x^2+1) with respect to x

y = sin(x2+1) In general, the chain rule is: dy/dx = f(g(x)) = df/dg * dg/dx Applying this to y: dy/dx = d(sin(x2+1))/d(x2+1) * d(x2+1)/dx = cos(x2+1) * (2x) = 2xcos(x2+1)

Answered by Maths tutor

3138 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


How does integration work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences