Functions question: f(x) = 3x + 2a; g(x) = ax + 6; fg(x) = 12x + b. a and b are constants; Work out the value of b

So this is a functions question which is essentially asking you to combine the first two functions and then equate them with the last one.
fg(x) can be considered as replacing the x in f(x) with g(x):
fg(x) = f(g(x)) = 3(ax+6) + 2afg(x) = 3ax + 18 + 2a
This new combined fg(x) is the same as the last function given in the question so the two can be equated:
3ax + 18 + 2a = 12x + b
Both sides of the equation have an x term and a constant so the x term on the right side must be the same as that on the left so 3a = 12 therefore a = 4.
The constants on both sides must also be equal therefore 18 + 2a = b. We found the value of a as 4 therefore b = 18 + 8 = 26
The answer is b = 26

RP
Answered by Ritik P. Maths tutor

3153 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations x^2+ y^2 = 29 and y–x = 3


What is the gradient of the line passing through the point (1,2) and (5,5)? What is the equation of this line? What is the equation of the line perpendicular to this line that passes through the origin (0,0)?


A bag contains only 8 beads. The beads are identical in all respects except colour. 3 of the beads are black and the other 5 beads are white. A bead is taken at random from the bag and not replaced. A second bead is then taken at random from the bag. What


In a village the number of houses and the number of flats are in the ratio 7 : 4 the number of flats and the number of bungalows are in the ratio 8 : 5 There are 50 bungalows in the village. How many houses are there in the village?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences