Find the area contained under the curve y =3x^2 - x^3 between 0 and 3

Equation of curve is: y = y =3x2 - x3To find area need to integrate between 0 and 3So integrating each term gives x3 - x4/4 + cThen sub in the limits [(33 - 34/4) - (03 - 04/4)] = 27-81/4 = 27 - 20.25 = 6.75

JR
Answered by Juan R. Maths tutor

2776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx where y=e^(4xtanx)


Find the exact value of sin(75°). Give your answer in its simplest form.


Differentiate y = (sin(x))^2 (find dy/dx)


Differentiate y = x^3 +x^2 - 4x +5 with respects to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning