What is the chain rule?

The chain rule is a technique used when differentiating. It is needed when differentiating composite functions, i.e. when y = f(g(x)).For example, y = sin(x^3) is a composite function, where (referring to the general formula above) f(x) = sin(x), g(x) = x^3.The general form of the chain rule is dy/dx = g'(x) x f'(g(x)), i.e. you differentiate the inside function then multiply it by the differential of the whole function.Using the example from above: y = sin(x^3) dy/dx = 3x^2 x cos(x^3)Reverse chain rule can be used to quickly integrate a function if it is spotted.For example, if you were given the function y = 3x^2 x cos(x^3) to integrate, you may just integrate by parts or you may spot that it will be sin(x^3), by reverse chain rule.

Answered by Maths tutor

2486 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = x^2 +2x + 3, find dy/dx.


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


Solve the simultaneous equations: ...


The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences