A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?

First use the sine rule (that a/sin(A)=b/sin(B)=c/sin(C)) to find the value of B. a/sin(A)=b/sin(B) so B=arcsin(bsin(A)/a) which is approximately equal to 28.82. Since the angles of a triangle have 180 degrees we then know that C is roughly equal to 111.18. Now we can use S=ab*sin(C)/2 where S is the area of the triangle so the area is roughly 5.59.

Answered by Maths tutor

2609 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).


Prove that the derivative of tan(x) is sec^2(x).


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


Supposing y = arcsin(x), find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning