Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.

We recall that a function f(x) is said to be an odd function when f(-x)=-f(x).

We are told that f(x) and g(x) are odd functions, so we know from the above definition that:

1. f(-x)=-f(x)

2. g(-x)=-g(x)

Solution

We want to show that s(x) is an odd function. In other words, we want to show that s(-x)=-s(x) (that it satisfies the above definition).

We are told that s(x)=f(x)+g(x), so substituting x for -x, we get that

s(-x)=f(-x)+g(-x)

=-f(x)-g(x) (using 1 and 2)

=-(f(x)+g(x))

=-s(x) as required!

We have now shown that s(-x)=-s(x) and thus we have proven that s(x) is indeed an odd function.

KH
Answered by Keir H. Maths tutor

13238 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


y = (x^3)/3 - 4x^2 + 12x find the stationary points of the curve and determine their nature.


The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences