Prove by contradiction that 2^(1/3) is an irrational number

Assume 2^(1/3) is rational, so can be written as p/q where p and q are integers with no common factors. p/q = 2^(1/3) (p^3)/(q^3) = 2 p^3 = 2q^3 Hence, p is even. Thus, p can be written as 2r, where r is an integer. p^3 = (2r)^3 = 2q^3 8r^3 = 2q^3 4r^3 = q^3 Hence, q is even. Therefore, p and q have common factor 2, which is a contradiction.

OR
Answered by Oscar R. Maths tutor

12748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do one tailed and two tailed hypothesis tests differ


Find the integral of 4sqrt(x) - 6/x^3.


A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


Solve for x when |x-1|<|2x+3|


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning