Solve the Equation: 2ln(x)−ln (7x)=1

This is an equation laid out in terms of the natural logarithm, which essentially is the reverse function of ex . From this equation we need to find a solution for x =? Since we know that this equation involves logarithms, we should keep the logarithm laws in mind, which are;
eln(x)= xln(a) + ln(b) = ln(ab)aln(b) = ln(ab)
1) Firstly we should change the first term of the equation, using the logarithm laws 3rd logarithm law from above, so that 2ln(x) = ln(x2) 2) Combine all the terms on the left hand side of the equation to form one term, using the 2nd log law to give you : ln(x2/7x) = 13) Now we can undo the natural logarithm to give us an equation in terms of x, using the 1st log law stated above. Therefore x2/7x = e14) We can now rearrange this equation and factorise it to find solutions of x:x2=e
7x (by multiplying across by 7x)x2-7ex=0 (subtracting 7ex from both sides)x(x-7e)=0 (factorising)Therefore --> x=0 or x =7e


DG
Answered by Dhruv G. Maths tutor

6091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If the function f is defined as f= 1-2x^3 find the inverse f^-1


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


Find the equation of the tangent for x = 2cos (2y +pi)


Find the integral of (3x^2+4x^5-7)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning