Solve the Equation: 2ln(x)−ln (7x)=1

This is an equation laid out in terms of the natural logarithm, which essentially is the reverse function of ex . From this equation we need to find a solution for x =? Since we know that this equation involves logarithms, we should keep the logarithm laws in mind, which are;
eln(x)= xln(a) + ln(b) = ln(ab)aln(b) = ln(ab)
1) Firstly we should change the first term of the equation, using the logarithm laws 3rd logarithm law from above, so that 2ln(x) = ln(x2) 2) Combine all the terms on the left hand side of the equation to form one term, using the 2nd log law to give you : ln(x2/7x) = 13) Now we can undo the natural logarithm to give us an equation in terms of x, using the 1st log law stated above. Therefore x2/7x = e14) We can now rearrange this equation and factorise it to find solutions of x:x2=e
7x (by multiplying across by 7x)x2-7ex=0 (subtracting 7ex from both sides)x(x-7e)=0 (factorising)Therefore --> x=0 or x =7e


DG
Answered by Dhruv G. Maths tutor

6090 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all solution to the equation 3tan(x)=8/sin(x) for 0<=x<=360 degrees


(GCSE) A rectangle has the following characteristics: its length is (2x + 5), its width is (3x - 2). The perimeter of the rectangle is 46 cm. What is the value of x?


Solve 7x – 9 = 3x + 2


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning