Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)

This is an example of a question using the product rulelet u = x2 and v = (3x - 1)1/2then u' = 2x and v' = 3 X 1/2 (3x - 1)-1/2 using the product rule we get f'(x) = x2 X 3/2 (3x - 1)-1/2 + (3x - 1)1/2 X 2xwhich is simplified to = x(15x - 4) / [2(3x - 1)1/2]

Answered by Maths tutor

3857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the binomial distribution and when should I use it?


Given that y=4x^3-(5/x^2) what is dy/dx in it's simplest form?


Derive from the standard quadratic equation, the form of the quadratic solution


Given that y=((3x+1)^2)*cos(3x), find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning