Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)

This is an example of a question using the product rulelet u = x2 and v = (3x - 1)1/2then u' = 2x and v' = 3 X 1/2 (3x - 1)-1/2 using the product rule we get f'(x) = x2 X 3/2 (3x - 1)-1/2 + (3x - 1)1/2 X 2xwhich is simplified to = x(15x - 4) / [2(3x - 1)1/2]

Answered by Maths tutor

4002 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xe^2


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3


Edexcel January 2007 - Question 4 (Rates and Differential Equations)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning