Factorise fully x^3 - 10x^2 + 16x

The first thing we notice is that there is a common factor of x. Thus we can factor it out and get:x(x^2 - 10x + 16)
This becomes much easier to deal with. We now focus on the equation in the brackets.We need to find 2 numbers that sum to make -10 and multiply to make +16. The only way this is possible is if both numbers are negative (we need at least one negative number to make -10 and we know negative * negative = positive so we need 2 negative numbers). So let's list these factors of +16:-1 -16-2 -8-4 -4-8 -2-16 -1
Of these, the only one that sums to -10 is -2 -8 (or -8 -2). Thus x^2 - 10x + 16 factorises to (x - 2)(x - 8)
Putting it all together,x^3 - 10x^2 + 16x = x(x - 2)(x - 3)

KT
Answered by Karina T. Maths tutor

3551 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Solve the simultaneous equations A and B: [A] 2x + y = 18 [B] x - y = 6


Solve (4x10^-3)x(9x10^4)


Find the value of x which satisfies the following equation 3 x2 + 6 x + 3 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning