Solve these simultaneous equations: 2x + 5y = 37 and y = 11 - 2x

Simultaneous equation questions look very intimidating because not only are there 2 equations to solve but there is 2 variables in each! To start with, we're going to make the equations look less confusing by re-writing the second equation to be in the same format as the first (will explain how to rearrange equations in video) to give answer 2x + 5y = 37 and 2x + y = 11. We are now going to eliminate a variable so we can begin to solve the equations. If we subtract the second equation from the first, we are left a one variable equation, 4y = 26. Dividing 26 by 4 gives us 6.5 as the value for y. We now subsitute this value into the first equation to find a value for x ---- 2x + (5x6.5) = 37, gives us 2x = 4.5, so x = 2.25. We can now double check by substituting both variables into the second equation in the original form --- 6.5 = 11 - (2x2.25) ---- 6.5 = 11 - 4.5, which is correct. We have now solved the simultaneous equation, the answer should be given in the form y = 6.5, x = 2.25.

BR
Answered by Bethany R. Maths tutor

5938 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60. The mean mark for the girls is 54. Work out the mean mark for the boys.


Find the values of x when x^2-6=x


Solve the simultaneous equations: 3x + y = -9, x^2 + 2x - 3 = y


5 White Socks and 3 Black socks are in a drawer. I take out two socks. What is the probability the socks are the same colour?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning