Prove that the square of an odd number is always 1 more than a multiple of 4

First we need to find a general form for an odd number, so that we can prove that when we square it, it will be 1 more than a multiple of 4 regardless of which odd number it is. An even number can always be represented as 2n, with n being any number, as this is always divisible by 2 and therefore even. An odd number is always one more than an even number so we can show this as 2n + 1Now we have a general form for an odd number, we can think about what happens when we square it. (2n + 1)2 = (2n + 1)(2n +1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n +1We can rewrite this by taking out a common factor of 4 from the first two terms, giving us: 4(n2 + n) + 14(n2 + n) is divisible by 4. Which means the answer is always 1 more than a multiple of 4, as required

IA
Answered by Isobel A. Maths tutor

2397 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a right angled triangle has its longest side 7cm and another side is 4cm then how long is the other side of the triangle? Show your working


Solve the simultaneous equations 3x+2y=13 and 4x+y=14


Why do I keep getting the wrong answer when tackling percentage change questions?


Solve this simultaneous equation: 2 + 5y = 3x, x + y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning