Prove that the square of an odd number is always 1 more than a multiple of 4

First we need to find a general form for an odd number, so that we can prove that when we square it, it will be 1 more than a multiple of 4 regardless of which odd number it is. An even number can always be represented as 2n, with n being any number, as this is always divisible by 2 and therefore even. An odd number is always one more than an even number so we can show this as 2n + 1Now we have a general form for an odd number, we can think about what happens when we square it. (2n + 1)2 = (2n + 1)(2n +1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n +1We can rewrite this by taking out a common factor of 4 from the first two terms, giving us: 4(n2 + n) + 14(n2 + n) is divisible by 4. Which means the answer is always 1 more than a multiple of 4, as required

IA
Answered by Isobel A. Maths tutor

2184 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.


What is Pythagoras' Theorem?


Work out 2 1/7 + 1 1/4.


Write 180g as a fraction of 3Kg. Give your answer in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences