Prove that the square of an odd number is always 1 more than a multiple of 4

First we need to find a general form for an odd number, so that we can prove that when we square it, it will be 1 more than a multiple of 4 regardless of which odd number it is. An even number can always be represented as 2n, with n being any number, as this is always divisible by 2 and therefore even. An odd number is always one more than an even number so we can show this as 2n + 1Now we have a general form for an odd number, we can think about what happens when we square it. (2n + 1)2 = (2n + 1)(2n +1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n +1We can rewrite this by taking out a common factor of 4 from the first two terms, giving us: 4(n2 + n) + 14(n2 + n) is divisible by 4. Which means the answer is always 1 more than a multiple of 4, as required

IA
Answered by Isobel A. Maths tutor

2267 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Probability: These 6 coins are in a box - 10p, 10p, 10p, 20p, 20p, 50p. Someone takes 2 coins at random. What is the probability that the total value of the two coins is at least 40p?


Expand and simplify: 5(x + 3) - 3(y - 2)


Find the equation of the line that passes through ( 5 , -4 ) and (3,8).


Work out the value of (16/81)^(3/4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences