How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

139632 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


Differentiate y=(x-1)^4 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences