How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

152516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^2+4x+12


Differentiate y=3xe^{3x^2}+2x


solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


Show that: [sin(2a)] / [1+cos(2a)] = tan(a)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning