How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

144526 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In the case of vectors, how do I find the shortest distance between a point and a line?


x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning