How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

140319 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of f'(x)=2x+5


A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?


When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?


Integrate the following function: f(x) = 8x^3 + 1/x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences