Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5

Firstly differentiate the function:f(x) = x3 + 3x2 + 2x + 5 (function)f'(x) = 3x2 + 6x + 2 (gradient function)
Stationary points are points where the graph has a gradient of zero
3x2 + 6x + 2 = 0
In order to find the x-values we need to solve the quadratic equation:a = 3, b = 6, c =2 ----> sub into the equation (will explain on whiteboard)Use quadratic equation to find x = -1 +/- root(3)/3
Finally sub in the x - values into the initial function to find the corresponding y values. Done!

NC
Answered by Nicolas C. Maths tutor

5944 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between differentiation and integration, and why do we need Calculus at all?


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning