Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5

Firstly differentiate the function:f(x) = x3 + 3x2 + 2x + 5 (function)f'(x) = 3x2 + 6x + 2 (gradient function)
Stationary points are points where the graph has a gradient of zero
3x2 + 6x + 2 = 0
In order to find the x-values we need to solve the quadratic equation:a = 3, b = 6, c =2 ----> sub into the equation (will explain on whiteboard)Use quadratic equation to find x = -1 +/- root(3)/3
Finally sub in the x - values into the initial function to find the corresponding y values. Done!

NC
Answered by Nicolas C. Maths tutor

6276 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning