Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5

Firstly differentiate the function:f(x) = x3 + 3x2 + 2x + 5 (function)f'(x) = 3x2 + 6x + 2 (gradient function)
Stationary points are points where the graph has a gradient of zero
3x2 + 6x + 2 = 0
In order to find the x-values we need to solve the quadratic equation:a = 3, b = 6, c =2 ----> sub into the equation (will explain on whiteboard)Use quadratic equation to find x = -1 +/- root(3)/3
Finally sub in the x - values into the initial function to find the corresponding y values. Done!

NC
Answered by Nicolas C. Maths tutor

5690 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Compute the integral of f(x)=x^3/x^4+1


Differentiate and factorise y = x^2(3x + 1)


Express 3sinx - 2cosx in the form R(sin(x-a) given R>0 and 0<a<90°. Hence solve 3sinx - 2cosx = 1 in the interval 0<x<360°. What are the maximum and minimum values of 2sinx - 3cosx?


Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences