Show that the function f(x) = x^2 + 2x + 2 is always positive for real values of x

By completing the square we find that f(x) = x2 + 2x + 2 = (x+1)2 + 1Since (x+1)2 is a number that has been squared, it must be greater than or equal to zero. Therefore, f(x) = (x+1)2 + 1 must be greater than zero because adding a positive number to a number that is greater than or equal to zero will always give a positive number.

BC
Answered by Bradley C. Maths tutor

6727 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sam and Jack share out £80 in the ratio 5:3, in that order. How much do they each get?


How do I solve the simultaneous equations x-2y=1 and x^2-xy+y^2=1?


what is x+24=15


Expand and simplify (2x + 5) (3x - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning