Integrate xsin(x) with respect to x

Apply the rule for integration for parts: Integral of udv = uv - integral of vdu. Choose u to be the term simplified the most when differentiated; in this case choose u to be x as the differential of x w.r.t x is 1. Then dv is sin(x).This means that du = 1 and v = -cos(x) as this is the integral of sin(x)Therefore the integral of xsin(x) = -xcos(x) - integral of (-cos(x))= -xcos(x) + integral of cos(x)= -xcos(x) + sin(x) + cWe must be careful not to forget the constant of integration, c. This arises due to the fact that any constant (i.e. any term with no x dependence) becomes zero when differentiated.

MS
Answered by Michael S. Maths tutor

3303 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.


Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


Differentiate: ln((e^x+1)/e^x-1))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning