Finding the intersection of a two lines (curved and linear example)

Line 1: y = 2x + 2 Line 2: y = x2 - 1Firstly, intersection of two lines is the point at where the coordinates of both lines are the same. X1 = X2 and Y1 = Y2Therefore, that means we can exploit that fact and to find the point of intersection of line 1 substituting y of line 2 into line 1 ending up with: 2x + 2 = x2 -1We then need to rearrange so that it is in the normal format of a quadratic equation Ax2 + Bx + C = 0 x2 - 2x -3 = 0This means we can now take our normal approach of solving a quadratic equation by factoring. As the value of A is 1 it is a little bit simpler and we can use a trick of a+b = B and a*b = C to find our factors. (x - 3)(x + 1) = 0 therefore, x = 3 or x = -1substituting back into our simplest equation results in us finding the corresponding values of y. @ x = 3 y = 2(3) + 2 = 8 (3,8) @ x = -1 y = 2(-1) + 2 = 0 (-1,0)

FF
Answered by Fabio F. Maths tutor

3626 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically: 6a + b = 16 5a - 2b = 19


There are 12 counters in a bag. There is an equal number of red counters, yellow counters and blue counters in the bag. There are no other counters in the bag. 3 counters are taken from the bag. Work out the probability of taking 3 red counters.


Express x^2+2x+4 in the form (x+a)^2 + b, hence find the stationary point of the curve.


A rectangle has an area of 20 cm2. Its length and width are enlarged by scale factor 3. Find the area of the enlarged rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning