If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?

First we must remember our equations of motion, (SUVAT equations).S = Displacement U = Initial velocity V = Final velocity A = Acceleration T = TimeV = U + ATS = UT + (1/2)AT2 V2 = U2 + 2ASS = (1/2)*(U+V)T
Then we must identify what information the question has given us.
The intial velocity (U) is 6ms-1 at an angle of 30° above the horizontal.
Using trigonometery we can then find the vertical and horizontal component of the velocity.(I would then use a diagram of a triangle and SOH CAH TOA to explain how to find the vertical and horizontal components)
Vertical inital velocity = 6ms-1 * Sin(30°) = 3ms-1Horizontal intial velocity = 6ms-1Cos(30°) = 3ms-1
As we are only interested in the height the ball reaches, we will use the vertical intial velocity as our value for U.We also know the acceleration due to gravity (A) is -9.8ms-2 and that at its maximum height the ball will have a final velocity (V) of 0ms-1 .
Using these values of V and A we can find the value of T using equation 1.
V = U + A
T0 = 3 + (-9.8)TT = 0.3 seconds
Now we can use this value for T alongside U and V in equation 4 to find the vertical distance the ball reaches (S).
S = (1/2)
(U+V)TS = (1/2)(3+0)
(0.3)S = 0.45m
The maximum height the ball reaches is 0.45m




LM
Answered by Lorcan M. Physics tutor

6384 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


Explain the difference between elastic and inelastic collisions.


A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.


A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning