Prove that the derivative of tan(x) is sec^2(x).

Let y = tan(x)

Recall the definition of tan(x) as sin(x)/cos(x)

Therefore y = sin(x)/cos(x)

Use the quotient rule, which states that for y = f(x)/g(x), dy/dx = (f'(x)g(x) - f(x)g'(x))/g2(x) with f(x) = sin(x) and g(x) = cos(x).

Recall the derivatives of sin(x) as cos(x) and cos(x) as -sin(x)

This gives:

dy/dx = (cos(x)*cos(x) + sin(x)*sin(x)) / cos2(x)

Recall the trigonometric identity sin2(x) + cos2(x) = 1

Therefore dy/dx = 1/cos2(x) = sec2(x)

QED

MG
Answered by Miriam G. Maths tutor

116461 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


Find the area between the positive x axis and the line given by y=-(x^2)+2x


How to translate a function of form y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning