Solve the simultaneous equations, 5x + 2y = 20 , x + 4y= 13

(Equation 1) 5x + 2y = 20 (Equation 2) x + 4y= 13
As we know the values for x and y are the same in both equations, we can use them to find out the values for both, In order to do this we need to take one equation and define it by either x or y, for example taking equation 2 and definining x in terms of y by rearranging the equation.
x + 4y = 13
x= 13 - 4y
Now we have x defined in terms of y we can put this into equation 1 and simplify to get a value for y.
5x + 2y = 20
5(13-4y) + 2y = 20
65 - 20y +2y = 20
65 - 18y = 20
-18y = -45
18y = 45
y = 2.5
Now that we have a value for y we can use that for find x. If we put our value for y into equation 2
x + 4y = 13
x + 4(2.5) = 13
x + 10 = 13
x = 3
Now we have our two values for x and y we have solved the simultaneous equations, to check they're correct we should substitute both values into either equation and see if the equation is correct.

EC
Answered by Ellen C. Maths tutor

11425 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorising and Expanding brackets


Solve the following quadratic equation x^(2)+7x+12


There are 30 balls in the bag, 10 of which are blue. Adam takes 2 balls out of the bag without a replacement and calculated that there is a probability of 0.2 of both balls being blue. What percentage error did he make compared to the true probability?


Write 16 × 8^2x as a power of 2 in terms of x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences