Using logarithms solve 8^(2x+1) = 24 (to 3dp)

Using the laws of logs you can see that if you log both sides of the equation you get: 

(2x+1)*log(8) = log(24) 

Dividing both sides of the equation by log(8) you get: 

2x+1 = log(24)/log(8)

Then it is a simple case of solving for x: 

x = 0.5*(((log(24)/log(8))-1)

x = 0.264

GR
Answered by Graham R. Maths tutor

16798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation and how is it done?


Prove n^3 - n is a multiple of 3


Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning