Using logarithms solve 8^(2x+1) = 24 (to 3dp)

Using the laws of logs you can see that if you log both sides of the equation you get: 

(2x+1)*log(8) = log(24) 

Dividing both sides of the equation by log(8) you get: 

2x+1 = log(24)/log(8)

Then it is a simple case of solving for x: 

x = 0.5*(((log(24)/log(8))-1)

x = 0.264

GR
Answered by Graham R. Maths tutor

16465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


How do you find the x co-ordinates of the stationary points of a curve with the equation y = 10x - 2x^2 - 2x^3


How do you find the stationary points on a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning