Using logarithms solve 8^(2x+1) = 24 (to 3dp)

Using the laws of logs you can see that if you log both sides of the equation you get: 

(2x+1)*log(8) = log(24) 

Dividing both sides of the equation by log(8) you get: 

2x+1 = log(24)/log(8)

Then it is a simple case of solving for x: 

x = 0.5*(((log(24)/log(8))-1)

x = 0.264

GR
Answered by Graham R. Maths tutor

15946 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


How does one find the area of a generic triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences