Differentiate with respect to X: x^2 + 2y^2+ 2xy = 2

Assuming the correct tools of differentiation have been taught, we can tackle each term seperately and then rearrange to have dy/dx as the subject.

Taking a look at the first term, x^2,  differentiating this term would become 2x (diffentiating x^n = nx^n-1)

Taking a look at the second term, 2y^2, it would appear we could differentiate it just like we did the first term. However this variable involves y and not x, meaning we must differentiate it implicitly.Therefore differentiating 2y^2 would become 4y(dy/dx)

Taking a look at the third term, 2xy, we immediately notice that it has both x terms and y terms involved; this should immediately hint to us that the product rule should be used. Therefore differentiating 2xy would become 2y + 2x(dy/dx) (Differentiating any term involving any other variable other than x with respect to x would require implicit differentiation).

Differentiating any constant (2) would = 0

Putting all these terms together would give:

2x + 4y(dy/dx) + 2y + 2x(dy/dx) = 0

With our basic GCSE knowledge of subject formula we can get:

2x + (dy/dx)(4y+2x) = 0

dy/dx = (-2x) / (4y+2x)

CO
Answered by Callum O. Maths tutor

39701 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning