Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)

y=x3-4x2+2A tangent to a curve at a specific point along the line will have excatly the same gradient as the curve at that point. For example if the point was (0,0) the tangent would just be a horizontal line along the x-axis. To work out the gradient we simply differentiate the curve, set this to equal 0 and solve with the given value of x. Here dy/dx = 3x2-8xSetting this to 0 and solving gives us 3(3)2-8(3)=3 and so our gradient at the point (3,-7) is 3We are now able to use the equation y-y(1)=m(x-x(1)) where m is the gradient and x(1) & y(1) are the coordinates we've been given. Rearranging we get y=3(x-3)-7y=3x-16 and this is the equation of the tangent to the curve y=x3-4x2+2 at the point (3,-7)

DW
Answered by Daniel W. Maths tutor

23934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Differentiate with respect to X: x^2 + 2y^2+ 2xy = 2


Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences