Can you differentiate the following function using two methods:- y = e^(2x+1)

The first method to differentiate this fuction is the basic chain rule method. differentiate 2x+1 and add this to the front of the function. This gives us 2e^(2x+1). the other method to differentiate this function is by using logs. if you log both sides base of e (ln), you get ln(y) = 2x+1 and then differentiating both sides with respect to x gives (1/y)*dy/dx= 2. This when rearranged gives dy/dx = 2y and we know that y = e^(2x+1). We end up with the same solution as before.

RN
Answered by Rajenth N. Maths tutor

5121 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.


Find X log(x)=4 Base 10


Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning