Can you differentiate the following function using two methods:- y = e^(2x+1)

The first method to differentiate this fuction is the basic chain rule method. differentiate 2x+1 and add this to the front of the function. This gives us 2e^(2x+1). the other method to differentiate this function is by using logs. if you log both sides base of e (ln), you get ln(y) = 2x+1 and then differentiating both sides with respect to x gives (1/y)*dy/dx= 2. This when rearranged gives dy/dx = 2y and we know that y = e^(2x+1). We end up with the same solution as before.

RN
Answered by Rajenth N. Maths tutor

4947 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)


How to integrate and differentiate ((3/x^2)+4x^5+3)


Find dy/dx when y = 2ln(2e-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning