How do I differentiate implicitly?

The most important thing to remember when differentiating implicitly is that y is a function of x. Rewriting y as y(x) often makes it much clearer. For example, evaluate d/dx (y2): using the aforementioned notation, this becomes d/dx [y(x)]2. By the chain rule, it is easy to see that this is equal to dy/dx * 2y.

Perhaps an easier way of remembering this is to differentiate with respect to y, then multiply by dy/dx. For example, evaluate d/dx(ln(y)): to find the answer, we differentiate ln(y) with respect to y to get 1/y, then multiply this by dy/dx to get dy/dx * 1/y.

The above method works because of the chain rule, which states that df/dx = df/dy * dy/dx. All we are doing is renaming the function as f (in the first example f = y2, in the second example f = ln(y)) and applying this result.

SG
Answered by Seb G. Maths tutor

4541 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve


By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


differentiate x^3-6x^2+2x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning