Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.

To find the value of R, use Pythagoras's Theorem using the coeffecients of cos θ and sin θ. The correct answer should be R=5. Expand the expression  R cos(θ – α). Equate the expanded expression with 3 cos θ + 4 sin θ to find the value of θ. The correct answer is α = 53...° approximately.

AG
Answered by Anahita G. Maths tutor

23498 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you prove to me why cos^2(X) + sin^2(X) = 1?


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


Why does inverse sin,cos or tan of numbers have multiple answers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning