Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.

To find the value of R, use Pythagoras's Theorem using the coeffecients of cos θ and sin θ. The correct answer should be R=5. Expand the expression  R cos(θ – α). Equate the expanded expression with 3 cos θ + 4 sin θ to find the value of θ. The correct answer is α = 53...° approximately.

AG
Answered by Anahita G. Maths tutor

22135 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.


Find the derivative of the curve e^(xy) = sin(y)


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences