How do I integrate by parts?

The integration by parts formula takes the form:

 

int(uv') = uv - int(vu') 

 

where v' = dv/dx and u' = du/dx

A lot of the art of using the integration by parts is working out which part to differentiate and which part to integrate. I find that the most important thing to look at first is 'reducing the power', and making the second integral simpler. So I would recommend looking at differentiating anything of the form x^n, and avoiding differentiating sines, cosines, or exponentials. Other than that tip, integrating by parts is a process that just needs to be repeated until your answer pops out! 

 

CB
Answered by Chris B. Maths tutor

5226 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How exactly does integration by parts work?


What is the method used for differentiation?


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning