Use the chain rule to differentiate y=(x-3)^(-3)

Hint: the chain rule states that for y=u(x) ^a, the derivative will be dy/dx = dy/du * du/dxSo we just need to find dy/du and du/dx!In this case u(x)=x-3, so du/dx = 1.from y=u^(-3), dy/du = -3u^(-4).This means we know dy/dx = -3u^(-4) * 1Converting from u to x, we get dy/dx = -3 (x-3)^(-4) .... done! 

RT
Answered by Rosemary T. Maths tutor

5050 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate parametrically y=3t+4 and x=2t^2 +3t-5


How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


How do you multiply matrices together?


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning