Differentiating (x^2)(sinx) Using the Product Rule

Firstly, what is the product rule? What does it actually say? Well, it tells us how to differentiate a function of the form uv - the product of the functions u and v. If y = uv, the product rule says:

dy/dx = (du/dx)v + u(dv/dx)

So you differentiate the first bit, leaving the second part alone - giving you (du/dx)v. Then, you differentiate the second bit, leaving the first alone, - giving you u(dv/dx). And then you just add the two results to get dy/dx.

Let's look at applying this to the example in the question, trying to differentiate this: y = (x^2)(sinx)

We can see that y is a product of two functions, x^2 and sinx. Using the process above, we differentiate the first part, x^2, and leave sinx alone. That gives us (2x)(sinx). Then, we differentiate the second bit, sinx, and leave x^2 alone, and that gives us (x^2)(cosx). Then we just add the two together: (2x)(sinx) + (x^2)(cosx). So from that calculation we've shown that

dy/dx = (2x)(sinx) + (x^2)(cosx)

EM
Answered by Edward M. Maths tutor

4759 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of sin(x), cos(x)?


A school has 1200 pupils. 575 of these pupils are girls. 2/5 of the girls like sports. 3/5 of the boys like sport. Work out the total number of pupils in the school who like sport.


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


A particle P of mass 2 kg is held at rest in equilibrium on a rough plan. The plane is inclined to the horizontal at an angle of 20°. Find the coefficient of friction between P and the plane.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences