G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

First combine the two functions so that we have an equation for a to solve:

G(h(a)) = (3^x)^3 + 1 = 3^(3x) + 1 = 244

which gives

3^(3x) = 243

Now we can use logarithms in order to solve the equation

log(3^(3x)) = log(243)

but log(3^(3x))=3x*log(3)

so we have x = (log(243))/(3*log(3))

and if we enter this into a calculator we find that x=5/3

JS
Answered by Josephine S. Maths tutor

4613 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


How do I find the equation of the normal line given a point on the curve?


Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning