G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

First combine the two functions so that we have an equation for a to solve:

G(h(a)) = (3^x)^3 + 1 = 3^(3x) + 1 = 244

which gives

3^(3x) = 243

Now we can use logarithms in order to solve the equation

log(3^(3x)) = log(243)

but log(3^(3x))=3x*log(3)

so we have x = (log(243))/(3*log(3))

and if we enter this into a calculator we find that x=5/3

JS
Answered by Josephine S. Maths tutor

4368 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


How do you find the equation of a line at a given point that is tangent to a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning