G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

First combine the two functions so that we have an equation for a to solve:

G(h(a)) = (3^x)^3 + 1 = 3^(3x) + 1 = 244

which gives

3^(3x) = 243

Now we can use logarithms in order to solve the equation

log(3^(3x)) = log(243)

but log(3^(3x))=3x*log(3)

so we have x = (log(243))/(3*log(3))

and if we enter this into a calculator we find that x=5/3

JS
Answered by Josephine S. Maths tutor

4396 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning