What are the set of values for x that satisfy the below equation?

x2 - 9x ≤ 36

1. Draw a graph.

y = x2 - 9x and y = 36

2. Find the points of intersection by solving x2 - 9x = 36

x2 - 9x = 36

x2 - 9x - 36 = 0

(x - 12)(x + 4) = 0

Therefore, the lines intersect at x = 12 and x = - 4

3. Either observe from your graph or plug in points either side of the points of intersection.

i) For x < -4

e.g. x = - 5. Sub. into LHS = (-5)2 - 9(-5) = 70 > 36

ii) For -4 < x < 12

e.g. x = 0. Sub. into LHS = 02 - 9(0) = 0 < 36

iii) For x > 12

e.g. x = 20. Sub. into LHS = 202 - 9(20) = 400 - 180 = 220 > 36

Therefore, x2 - 9x ≤ 36 when -4 ≤ x ≤ 12

DD
Answered by Daisy D. Maths tutor

10410 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=3xe^{3x^2}+2x


Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


Find partial fractions of : (x+7) / ((x-3)(x+1)^2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences