Solve the simultaneous equations '2X+Y=7' and '3X-Y=8'

In order to solve this question we need to remove one variable, either X or Y. Let us remove X in this case. The coefficents of X are 2 and 3. Their lowest common multiplte is 6. We can therefore get both values of X to be 6 in both equations in order to remove this variable. 

Multipying the first equation by 3 gives us 6X+3Y=21. Multipying the second gives us 6X-2Y=16.

If we subtract the first question from the second, the X variable will cancel and we are left with the following:

3y-(-2y)=21-16 which simplifies to 5y=5. Didiving both sides by 5 gives Y=1

The value of Y being 1 can now be substitued back into either equation to find the value of X. Let us try the first one.

2x+(1)=7. Subtracting 1 from both sides gives 2X=6. Dividing both sides by 2 gives X=3.

Our answer can be checked by substituting the values we obtatined for X and Y into the second original equation.

3(3)-1=8. 8=8. We have therefore solved this question. 

AP
Answered by Arjan P. Maths tutor

10564 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Consider f:R -> R, f = x/ sqrt(x^2+1). Prove that for any a between -1 and 1, f(x)=a has only one solution.


How do you rearrange formula?


solve the simultaneous equations: 3x + 5y = 4 ; 7x - 3y = 8


In the isosceles triangle ABC, AB=AC and angle B=(3x +32)degrees and angle C=(87-2X)degrees


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning