Find the derivative of f where f(x)=a^x.

This is a difficult question that you only need to know the result of.However, it's a good exercise to derive it. 

Starting with f(x)=ax we can take the natural logarithm of both sides (so we can use one of its properties).

This gives us ln(f(x))=ln(ax), from the natural logarithms properties we know this is equal to ln(f(x))=x*ln(a).

Now using the chain rule we can differentiate both sides,

d(ln(f(x)))/dx= f'(x)/f(x), d(x*ln(a))/dx=ln(a)

so we now have f'(x)/f(x)=ln(a). Recalling that f(x)=ax this gives us the answer,

f'(x)=axln(a).

LR
Answered by Larry R. Maths tutor

4189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate (x^2)cos(3x) with respect to x


Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


Problem of Optimisation: A company is designing a logo. The logo is a circle of radius 4 inches with an inscribed rectangle. The rectangle must be as large as possible.


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning