How do I integrate cos^2(x)?

The key to solving any integral of this form is to use the cosine rule:

cos(2x) = cos2(x) - sin2(x) = 2cos2(x) - 1 = 1 - 2sin2(x)

All of these forms are really helpful when solving problems such as this, and it's great if you can remmeber them, though if you get stuck in an exam, they can all be derived from the addition formulae that are probably on your fomula sheet!

So, using the above idenities, we know that:

2cos2(x) - 1 = cos(2x)

2cos2(x) = cos(2x) + 1

cos2(x) = (cos(2x) + 1)/2

So instead, we perform the integral of (cos(2x) + 1)/2, which we already know how to do.

=> (sin(2x))/4 + x/2

DF
Answered by Daniel F. Maths tutor

38062 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x)/(x^3)


Integrate x*ln(x)


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


Show that x^2+6x+11 can be written in as (x+p)^2+q, where p and q are integers to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning