Prove that the d(tan(x))/dx is equal to sec^2(x).

You can express tan(x) as sin(x)/cos(x). Therefore, tan(x)= sin(x)/ cos(x)The quotient rule can be applied here as there is a function of x in the numerator and denominator.Quotient Rule: (v*(du/dx) - u*(dv/dx))/v2Let u =sin(x) and v=cos(x) and hence (du/dx)= cos(x) and (dv/dx)= -sin(x).Therefore:d(tan(x))/dx= (cos(x)cos(x))-(sin(x)(-sin(x))/(cos2(x))=(cos2(x)+sin2(x))/(cos2(x))Using the trig identity, cos2(x)+sin2(x)=1, the numerator of the fraction can be tidied and heavily simplified.d(tan(x))/dx= 1/(cos2(x))As 1/(cos(x)) is equal to sec(x), 1/(cos2(x)) is equal to sec2(x).

CU
Answered by Chinazam U. Maths tutor

18327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos(x)sin^2(x)


How do you do algebraic long division?


AQA PC4 2015 Q5 // A) Find the gradient at P. B) Find the equation of the normal to the curve at P C)The normal P intersects at the curve again at the point Q(cos2q, sin q) Hence find the x-coordinate of Q.


Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning