Prove that the d(tan(x))/dx is equal to sec^2(x).

You can express tan(x) as sin(x)/cos(x). Therefore, tan(x)= sin(x)/ cos(x)The quotient rule can be applied here as there is a function of x in the numerator and denominator.Quotient Rule: (v*(du/dx) - u*(dv/dx))/v2Let u =sin(x) and v=cos(x) and hence (du/dx)= cos(x) and (dv/dx)= -sin(x).Therefore:d(tan(x))/dx= (cos(x)cos(x))-(sin(x)(-sin(x))/(cos2(x))=(cos2(x)+sin2(x))/(cos2(x))Using the trig identity, cos2(x)+sin2(x)=1, the numerator of the fraction can be tidied and heavily simplified.d(tan(x))/dx= 1/(cos2(x))As 1/(cos(x)) is equal to sec(x), 1/(cos2(x)) is equal to sec2(x).

CU
Answered by Chinazam U. Maths tutor

18979 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


How do you find the gradient of a parametric equation at a certain point?


given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning