Solve x^2 + x -12= 0 for all values of x.

This is a quadratic equation so there are two main methods you can use to solve it- factorising and completing the square.

My preferred method and the one I will demonstrate is factorisation.

The above equation will take the form:

(x + a)(x +b) = 0

Therefore if we multiply out the brackets we get:

x^2 + (a+b)x +ab = 0

This means that

(a+b) = 1 (the coefficient of x)

and 

ab = 12

From trial and error we find the values for a and b which are 

a= -3

b= 4

So x^2 + x -12= 0 can be written as (x-3)(x+4)= 0

When we multiply by 0 we get 0 therefore

x-3 = 0 or 

x+4= 0

From rearranging the above equations we find the answer is x = 3 or x = -4

SF
Answered by Sam F. Maths tutor

10875 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the Pythagoras Equation?


How do I know when to use SOHCAHTOA and when to use the sine or cosine rule?


Prove that the decimal 0.303030... (recurring) has the value of 10/33


A triangle has sides of 4cm and 5cm with the hypotenuse unknown. What is the length of the unknown side?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences