Find the solution(s) of 3(x^2)-6x+2=0

This is a quadratic equation and as such it has zero, one or two solutions depending on the value of the discriminant (b2-4ac). In this equation, a=3, b=-6 and c=2 so b2-4ac = 36-24=12. As this is >0 the equation has two real solutions, however this is not a square number and therefore we cannot factorise and will have to use the quadratic formula. This is (-b (+/-) (b2-4ac)1/2)/(2a). Subsituting in a, b and c gives us (6 (+/-) 121/2)/6 which means our two solutions are x=1+(1/6)121/2and x=1-(1/6)121/2

AS
Answered by Angus S. Maths tutor

4324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 + 2xy – 3y^2 + 16 = 0. Find the coordinates of the points on the curve where dy/dx =0


How do i remember the difference between differentiation and integration?


Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)


Make a the subject of 3(a+4) = ac+5f .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning