Find the solution(s) of 3(x^2)-6x+2=0

This is a quadratic equation and as such it has zero, one or two solutions depending on the value of the discriminant (b2-4ac). In this equation, a=3, b=-6 and c=2 so b2-4ac = 36-24=12. As this is >0 the equation has two real solutions, however this is not a square number and therefore we cannot factorise and will have to use the quadratic formula. This is (-b (+/-) (b2-4ac)1/2)/(2a). Subsituting in a, b and c gives us (6 (+/-) 121/2)/6 which means our two solutions are x=1+(1/6)121/2and x=1-(1/6)121/2

AS
Answered by Angus S. Maths tutor

3934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

make into a cartesian equation= x=ln(t+3) y= 1/t+5


Differentiate 4x^2 + 2ln3x + e^x


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences