Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)

When proving trigonometric identites, we must show that the left hand side of the equation = the right hand side. Here we will start with the left hand side (LHS) and show that it is equivalent to the right hand side (RHS).LHS=2sin(2x)-3cos(2x)-3sin(x)+3Using the double angle rules for sin(2x) and cos(2x);LHS=2(2sin(x)cos(x))-3(cos2(x)-sin2(x))-3sin(x)+3Notice that the RHS has sin(x) factorised out, meaning that every term in the LHS has a common factor of sin(x). Currently the LHS has a cos2x term, but we can change this to a sin2x term using the identity: cos2(x)=1-sin2(x) LHS=2(2cos(x)sin(x))-3(1-sin2(x)-sin2(x))-3sin(x)+3=4cos(x)sin(x)-3(1-2sin2(x))-3sin(x)+3=4cos(x)sin(x)-3+6sin2(x)-3sin(x)+3=4cos(x)sin(x)+6sin2(x)-3sin(x)=sin(x)(4cos(x)+6sin(x)-3)=RHSWe have shown that LHS=RHS, therefore the proof is complete.

JB
Answered by Joe B. Maths tutor

15915 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


integrate (2x)/(x^2+1) dx with limits 1, 0


Given a quadratic equation, how do I find the coordinates of the stationary point?


A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning