Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)

When proving trigonometric identites, we must show that the left hand side of the equation = the right hand side. Here we will start with the left hand side (LHS) and show that it is equivalent to the right hand side (RHS).LHS=2sin(2x)-3cos(2x)-3sin(x)+3Using the double angle rules for sin(2x) and cos(2x);LHS=2(2sin(x)cos(x))-3(cos2(x)-sin2(x))-3sin(x)+3Notice that the RHS has sin(x) factorised out, meaning that every term in the LHS has a common factor of sin(x). Currently the LHS has a cos2x term, but we can change this to a sin2x term using the identity: cos2(x)=1-sin2(x) LHS=2(2cos(x)sin(x))-3(1-sin2(x)-sin2(x))-3sin(x)+3=4cos(x)sin(x)-3(1-2sin2(x))-3sin(x)+3=4cos(x)sin(x)-3+6sin2(x)-3sin(x)+3=4cos(x)sin(x)+6sin2(x)-3sin(x)=sin(x)(4cos(x)+6sin(x)-3)=RHSWe have shown that LHS=RHS, therefore the proof is complete.

JB
Answered by Joe B. Maths tutor

15059 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


What is the indefinite integral of cos^2x?


Differentiate the function f(x)=2xsin3x


Given that y=(sin4x)(sec3x), use the product rule to find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences