Answers>Maths>IB>Article

Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256

To solve this problem, the maximum and minimum points of equations can be deduced through the differentiation process. This looks at the gradient of the function and the maximum/minimum value occurs when the gradient is zero.

The differentiation process is as follows:

f(x)=Axn

df(x)/dx = nAx(n-1)

The equation

y = −16x2 + 160x - 256

becomes

dy/dx= -32x+160

after differentiation and set dy/dx=0

0=-32x+160

x=5

and the corresponding value for y is:

y=-16(52)+160(5)-256= 144

And so the coordinate of the maximum point is:

(5,144)

MW
Answered by Michael W. Maths tutor

3078 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find an antiderivative to the function f(x) = e^x cos(x)


Find a and b (both real) when (a+b*i)^2=i.


f(x)=sin(2x) for 0<x<pi, find the values of x for which f is a decreasing function


Determine the integral: ∫5x^4dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences