How do you solve the integral of ln(x)

This will use the process of integration by parts.

First, notice that ln(x)=ln(x)*1.

So, the integral of ln(x) is the integral of ln(x)1. The process of integration by parts is;  int(vdu/dx)dx=vu - int(dv/dx*u)dx.

Set ln(x)=v, 1=du/dx, so int(ln(x)*1)dx = ln(x)- int(1/xx)dx = xln(x)-int(1)dx = xln(x)-x+constant.

And you're done!

YP
Answered by Yaniv P. Maths tutor

4462 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the indefinite integral of (x^4)*(-sin(x)) dx


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


find dy/dx when y=x^3 + sin2x


Find the first 4 term of the binomial expansion (2-4x)^5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences