How do you differentiate 2^x?

We can differentiate this implicitly by writing the question as:y = 2Then we take the log of both sides:ln(y) = ln(2x)Using the rules of logartithms this can be written as:ln(y) = x ln(2)Now we can differentiate this easily:y-1 dy/dx = ln(2)We can now re-arrange to get:dy/dx = y ln(2)And finally we can substitute y to get our answer:dy/dx = 2ln(2)So we have shown that the derrivative of 2x is simply 2x multiplied by ln(2)

AC
Answered by Alex C. Maths tutor

14409 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.


Why does the second derivative tell us something about a function?


f(x)=2x^3-7x^2+4x+4, prove that (x-2) is a factor and factorise f(x) completely


How to differentiate with respect to x, xsin2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning