How to differentiate using the Product Rule

The Product Rule is used when differentiating two functions that are being multiplied together. It can be used by multiplying each function by the derivative of the other and adding.  

If y=uv then

dy/dx= udv/dx + vdu/dx  

To illustrate this rule look at the example below: 

y=x2e3x

u=x2  v=e3x      du/dx= 2x    dv/dx= 3e3x

Therefore dy/dx= (x2)(3e3x)+ (e3x)(2x)  

               dy/dx= 3x2e3x + 2xe3x 

CM
Answered by Callum M. Maths tutor

4809 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Give the first and second derivative of the function f(x) = 5/x - 9x + 4


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


How do I integrate ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences