Prove why the quadratic formula works

The quadratic formula is x = [-b ± √(b2 - 4ac)]/2a (1) ,where a,b and c are the coefficents of a quadratic in the form ax^2+bx+c=0 (2).

To prove that this works we need to start from equation (2)and using algebra get to equation (1).

So our first step will be to take equation (2) and divide it all by a. This leaves us with x^2+(b/a)x+(c/a)=0 (3). We are allowed to do this as we know that is non zero.

Then we subtract (c/a)from both sides of equation (3), which results in x^2+(b/a)x=-(c/a) (4).

In the next step we want to complete the square so we have to add (b/2a)^2 to both sides of equation (4). This the gives us x^2+(b/a)x+(b/2a)^2=-(c/a)+(b/2a)^2 (5).

We then complete the square on the LHS of (5) to give us [x+(b/2a)]^2=-(c/a)+(b/2a)^2  and here the RHS can als be re-written to give us (b^2-4ac)/2a to give us a full equation of [x+(b/2a)]^2=(b^2-4ac)/2a (6).

Now we can take the square root of both sides of (6) to give us x+(b/2a)=(sqrt(b^2-4ac)/2a) (7).

Now all we have to do is minus (b/2a) from both sides, this results in the quatratic formula of  x = [-b ± √(b2 - 4ac)]/2(1) so there we have proven why the quadratic formula works.

JR
Answered by Jake R. Maths tutor

5602 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences