Solve the simultaneous equations: 3x+5y=3 and 6x+6y=10

(1): 3x+5y=3

(2): 6x+6y=10

Multiply number one by two to give a common factor of 6x in both equations.

(3)=[2*(1)]- 6x+10y=6

Take away equation (2) from equation (3) to leave us with only y's and numbers so that we can solve a value of y.

(3)-(2): 4y=-4

Divide both sides by 4

y=-1

With this value sub back into an original equation wherever there is a y, this does not matter if you choose (1) or (2) as it will give you the same value.

(1): 3x+5y=3

(1): 3x+5(-1)=3

(1): 3x-5=3

(1): 3x=8

(1): x=8/3

(1): x=2.66666666

(1): x=2.67

Final values

y=-1; x=8/3 or 2.67

EO
Answered by Ethan O. Maths tutor

4252 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a group of 120 people, 85 have black hair, 78 have brown eyes and 20 have neither black hair nor brown eyes. Find the probability of a random person being picked having black hair, given they have brown eyes


Expand and simplify (3x^2 + 2)(2x + 5) – 6x(x^2 – 3)


How do you factorise a quadratic with a co-efficient in front of the x^2 - e.g: 3x^2 + 14x + 8


Expand and simplify 2(a + 3) + 5(a – 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning