Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]

This may look complicated at first but it can be broken down into a number of simple steps...

For the left side of the equation, the d/dx tells you we are differentiating and since (x3 + 3x2)ln(x) sees two functions multiplied together, we therefore use the product rule.

The product rule looks like this:

u v' + u' v

where in this case u = (x3 + 3x2) and v = ln(x)

u' is the differential of u. Differentiating here simply involves multiplying the coefficient (number in front of the x) by the power and then subtracting one from the power so:

 u' = 3x2 + 6x

v' is the differential of v so:

v' = 1/x

Now we simply put the values into our product rule equation and put into our product rule equation:

u v' + u v'

(x3 + 3x2)(1/x) + (3x2 + 6x)(ln(x))

Expanding the first set of brackets gives:

x2 + 3x + (3x2 + 6x)(ln(x))

Putting this into the equation stated in the question gives:

x2 + 3x + (3x2 + 6x)(ln(x)) = 2x2 + 5x

Rearrange and simplify as follows:

(3x2 + 6x)(ln(x)) = x2 + 2x

ln(x) = (x2 + 2x) / (3x2 + 6x)

Now if we factorise the bottom of the fraction:

ln(x) = (x2 + 2x) / (2(x2 + 3x))

And cancelling the x2 + 2x terms:

ln(x) = 1/3

Solving for x gives:

x = e(1/3)

RH
Answered by Robbie H. Maths tutor

7864 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the point of intersection of two vector lines?


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning