MYTUTOR SUBJECT ANSWERS

343 views

Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]

This may look complicated at first but it can be broken down into a number of simple steps...

For the left side of the equation, the d/dx tells you we are differentiating and since (x3 + 3x2)ln(x) sees two functions multiplied together, we therefore use the product rule.

The product rule looks like this:

u v' + u' v

where in this case u = (x3 + 3x2) and v = ln(x)

u' is the differential of u. Differentiating here simply involves multiplying the coefficient (number in front of the x) by the power and then subtracting one from the power so:

 u' = 3x2 + 6x

v' is the differential of v so:

v' = 1/x

Now we simply put the values into our product rule equation and put into our product rule equation:

u v' + u v'

(x3 + 3x2)(1/x) + (3x2 + 6x)(ln(x))

Expanding the first set of brackets gives:

x2 + 3x + (3x2 + 6x)(ln(x))

Putting this into the equation stated in the question gives:

x2 + 3x + (3x2 + 6x)(ln(x)) = 2x2 + 5x

Rearrange and simplify as follows:

(3x2 + 6x)(ln(x)) = x2 + 2x

ln(x) = (x2 + 2x) / (3x2 + 6x)

Now if we factorise the bottom of the fraction:

ln(x) = (x2 + 2x) / (2(x2 + 3x))

And cancelling the x2 + 2x terms:

ln(x) = 1/3

Solving for x gives:

x = e(1/3)

Robbie H. A Level Maths tutor, GCSE Maths tutor, 11 Plus Maths tutor,...

8 months ago

Answered by Robbie, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

321 SUBJECT SPECIALISTS

£26 /hr

Priya L.

Degree: Economics (Bachelors) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Maths
Further Mathematics
Economics

“My goal is to elevate the confidence of students by ensuring they truly understand Maths at GCSE and A Level”

Roma V. A Level Maths tutor, 13 Plus  Maths tutor, GCSE Maths tutor, ...
£26 /hr

Roma V.

Degree: Mathematics, Operational Research, Statistics and Economics (Bachelors) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Maths
Further Mathematics
Economics

“Top tutor from the renowned Russell university group, ready to help you improve your grades.”

£24 /hr

Ayusha A.

Degree: BEng electrical and electronics engineering (Bachelors) - Newcastle University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“About me: I am a final year Electrical and Electronic Engineering student at Newcastle University. I took Mathematics, Further Mathematics, Chemistry and Physics as my A-level subjects. I did peer mentoring in university and also have...”

About the author

Robbie H.

Currently unavailable: for regular students

Degree: Engineering Design (Masters) - Bristol University

Subjects offered:Maths, Physics

Maths
Physics

“I am a 22 year old Master's student at the University of Bristol studying Engineering Design. I achieved a First in my Bachelors and A*A*A at A Level. I have apassion for maths and science and hope that in my sessions some of this wil...”

MyTutor guarantee

You may also like...

Other A Level Maths questions

Solve 4cos(2x )+ 2sin(2x) = 1 given -90° < x < 90°. Write 4cos(2x )+ 2sin(2x) in the form Rcos(2x - a), where R and a are constants.

How will you simplify (3 xsquare root of 2) to the square?

Express square root of 48 in the form n x square root of 3 , where n is an integer

I don't understand chain rule for differentiation especially when combined with more complex functions.

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok