What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?

To work out the gradient of a function f(x), we need to differentiate it with respect to x, to give us f'(x). If x = a at a point, then the gradient of f(x) at that point is f'(a) (substitute a in place of x in the equation). Each term of f(x) can be differentiated separately (one at a time) to give f'(x).

If another function g(x) = xn, the differential of the function g'(x) = nxn-1. We can apply this to our function f(x) by writing the power of x in each term (to make it easier).

f(x) = 2x2 + 3x1 -7x0

f'(x) = 22x1 + 31x0 -7*0x-1

f'(x) = 4x + 3

We then substitute our value of x into f'(x). x = -2, therefore f'(-2) = 4*-2 + 3 = -5.

The gradient of f(x) at x = -2 is -5.

JJ
Answered by Jake J. Maths tutor

11680 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Taylor Series


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


What are the necessary conditions for a random variable to have a binomial distribution?


What is Bayes' rule and why is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning