Show that the derivative of ln(x) = 1/x

We can start by letting y = ln(x)

What we are trying to show is that dy/dx = 1/x

Since y = ln(x), then e= eln(x) = x

Taking the derivative of each side of this equation will give us ey.dy/dx = 1

If we divide each side of this new equation by ethen we have that dy/dx = 1/ey = 1/x as required.

JC
Answered by James C. Maths tutor

10368 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use the chain rule for differentiation?


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Can I take a derivative at x=0 for the function f(x) = |x| ?


Can you explain what a logarithm is?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning