Find the integral of log|x| by integration by parts

The question says to use integration by parts on this question, but at the minute we only have one variable.

Therefore, we introduce a 1, so that log|x|= 1*log|x|, here we have not altered the value of the function, but have intoduced a variable so that integration by parts can be used.

The derivative of Log|x| is simply 1/x, so it will be the 1 that we will integrate, which is x.

We then sub these into the by parts formula of uv-∫u'v

This is therefore equal to xlog|x|-∫x/x.dx

=xlog|x|-∫1dx

=xlog|x|-x.

LP
Answered by Laura P. Maths tutor

5104 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


How do I calculate where a function is increasing/decreasing?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences