Solve the simultaneous equations: 2x-3y = 24 and 6x+2y = -5

There are numerous alternative ways to solve these simultaneous equations. For this problem, one of the simplest methods is to multiply the first equation by 3, so that we get 6x in both equations:

(2x - 3y)3 = 243, giving 6x - 9y = 72

If we now subtract the second equation from the first one (multiplied by 3), we get:

(6x - 9y) - (6x + 2y) = 72-(-5)

This way we are left only with y on the left hand side:

-9y - 2y = 77

-11y = 77

Thus we found the value of y:

y = -77/11 = -7

Now we can substitute the value for y into the first equation and find x (substituting into the 2nd equation would also work fine):

2x - 3(-7) = 24

2x + 21 = 24

2x = 3

x = 3/2

Therefore, the solution is: x = 3/2 and y= -7

AS
Answered by Augustinas S. Maths tutor

3562 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I find the expression for the nth term in a series of numbers?


Solve the equation (3x + 2)/(x - 1) + 3 = 4 (3 marks)


Prove that the square of an odd number is always 1 more than a multiple of 4.


How do I work out the exact value of a number which is expressed as an indice, for example 81^-1/4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences