Solve the simultaneous equations: 2x-3y = 24 and 6x+2y = -5

There are numerous alternative ways to solve these simultaneous equations. For this problem, one of the simplest methods is to multiply the first equation by 3, so that we get 6x in both equations:

(2x - 3y)3 = 243, giving 6x - 9y = 72

If we now subtract the second equation from the first one (multiplied by 3), we get:

(6x - 9y) - (6x + 2y) = 72-(-5)

This way we are left only with y on the left hand side:

-9y - 2y = 77

-11y = 77

Thus we found the value of y:

y = -77/11 = -7

Now we can substitute the value for y into the first equation and find x (substituting into the 2nd equation would also work fine):

2x - 3(-7) = 24

2x + 21 = 24

2x = 3

x = 3/2

Therefore, the solution is: x = 3/2 and y= -7

AS
Answered by Augustinas S. Maths tutor

3952 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jess wants to buy 30 mugs for her tea party. She can buy them at Shop A at £3.49 each or at Shop B as a pack of 30 at £58 plus VAT at 20%. She wants to get the cheapest option. Which shop should she buy from?


How do you work out the circumference and area of a circle?


Expand and simplify 3(x+4) - 2(4x+1)


Find the lowest common multiple and highest common factor of 30 and 60.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning